home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAASSSSVVVV2222((((3333FFFF)))) DDDDLLLLAAAASSSSVVVV2222((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLASV2 - compute the singular value decomposition of a 2-by-2 triangular
- matrix [ F G ] [ 0 H ]
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )
-
- DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DLASV2 computes the singular value decomposition of a 2-by-2 triangular
- matrix
- [ F G ]
- [ 0 H ]. On return, abs(SSMAX) is the larger singular value,
- abs(SSMIN) is the smaller singular value, and (CSL,SNL) and (CSR,SNR) are
- the left and right singular vectors for abs(SSMAX), giving the
- decomposition
-
- [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
- [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- F (input) DOUBLE PRECISION
- The (1,1) element of the 2-by-2 matrix.
-
- G (input) DOUBLE PRECISION
- The (1,2) element of the 2-by-2 matrix.
-
- H (input) DOUBLE PRECISION
- The (2,2) element of the 2-by-2 matrix.
-
- SSMIN (output) DOUBLE PRECISION
- abs(SSMIN) is the smaller singular value.
-
- SSMAX (output) DOUBLE PRECISION
- abs(SSMAX) is the larger singular value.
-
- SNL (output) DOUBLE PRECISION
- CSL (output) DOUBLE PRECISION The vector (CSL, SNL) is a unit
- left singular vector for the singular value abs(SSMAX).
-
- SNR (output) DOUBLE PRECISION
- CSR (output) DOUBLE PRECISION The vector (CSR, SNR) is a unit
- right singular vector for the singular value abs(SSMAX).
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Any input parameter may be aliased with any output parameter.
-
- Barring over/underflow and assuming a guard digit in subtraction, all
- output quantities are correct to within a few units in the last place
- (ulps).
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAASSSSVVVV2222((((3333FFFF)))) DDDDLLLLAAAASSSSVVVV2222((((3333FFFF))))
-
-
-
- In IEEE arithmetic, the code works correctly if one matrix element is
- infinite.
-
- Overflow will not occur unless the largest singular value itself
- overflows or is within a few ulps of overflow. (On machines with partial
- overflow, like the Cray, overflow may occur if the largest singular value
- is within a factor of 2 of overflow.)
-
- Underflow is harmless if underflow is gradual. Otherwise, results may
- correspond to a matrix modified by perturbations of size near the
- underflow threshold.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-